# Linkages Between North Atlantic Right Whales and their Habitat

Andrew J. Pershing

Earth & Atmospheric Science/
Computing & Information Science
Cornell University
Ithaca, NY





### Acknowledgements

#### Collaborators

Cornell Bruce Monger, Charles Greene

URI Bob Kenney

PCCS Stormy Mayo

NEFSC Jack Jossi, David Mountain, Bill Overholtz

#### Funding

- Northeast Consortium
- NOAA Coastal Ocean Program
- NOAA Coastal Services Center
- NOAA Right Whale Grants Program
- NASA Decision Support

#### Outline

- Right whales & the Gulf of Maine ecosystem
  - Copepods and calves
  - Climate, salinity, and herring
- Cetacean informatics
  - Synthesizing information with models
  - Linking satellite data to whale distributions



## Right Whales 101





- Why the long face?
  - Lonely (350)
  - Getting lonelier—extinct in 200 yrs?
- All known feeding grounds in Gulf of Maine/Scotian Shelf
- Main prey: Calanus finmarchicus

### **Gulf of Maine Time Series**

 Hypothesis: right whale birth rates are related to Calanus abundance



No significant linear correlation with Calanus

## Right Whale Reproduction

But, whales are nonlinear...



- -3 year reproductive cycle
- -Find probability functions giving best agreement with observations

### Regional Relationships



- Divided Gulf of Maine into 4 regions
- Tested seven Calanus series from each region:
  - 6 bi-monthly periods
  - yearly average

### Results



- Calanus in western Gulf of Maine is a good predictor of right whale births
  - Yearly average is best (p<0.01)</li>
  - May-June and July-August periods are good (p<0.05)</li>

### Results



- Calanus in western Gulf of Maine is a good predictor of right whale births
  - Yearly average is best (p<0.01)</li>
  - May-June and July-August periods are good (p<0.05)</li>
- Right whales feed in Great South Channel, especially in March-May

## Results



- Low birth rate in 1990s related to Calanus
- Model also implies that feeding before pregnancy most important

### Climate Impacts

#### Warm State=NAO+





- Changes in N. Atlantic impact the Gulf of Maine
- Strongest changes come from Labrador Sea





Reduced surface salinity



Bigger fall bloom



Increased copepod reproduction (e.g. Durbin et al. 2003\*)

# Impact of Shift







# Right Whale, Wrong Time?

- Not much we can do about birth rates
- More options for mortality
  - Ship strikes
  - Fishing gear





### **Saving the Whales**

- Predicting births is interesting, but of little management value
  - Need to know where/when whales are
- But, suggests that food is very important, especially for females
  - Implication: identifying feeding areas should be a good way to locate whales
  - Focus on modeling whale food

#### **Cetacean Informatics**



- We collect a lot of data from the Gulf of Maine
  - SST, chlorophyll from satellites
  - Hydrography and meteorology from buoys
  - Zooplankton from surveys
- Information=when/where right whales are likely
- Need knowledge to produce information from available data

#### **Cetacean Informatics**



- We collect a lot of data from the Gulf of Maine
  - SST, chlorophyll from satellites
  - Hydrography and meteorology from buoys
  - Zooplankton from surveys
- Information=when/where right whales are likely
- Need models to produce information from available data

#### **Cetacean Informatics**



- We collect a lot of data from the Gulf of Maine
  - SST, chlorophyll from satellites
  - Hydrography and meteorology from buoys
  - Zooplankton from surveys
- Information=when/where right whales are likely
- Need models to produce information from available data

### Whale Food

- Main prey--Calanus finmarchicus
  - Abundant, big, fat
- Idea
  - Calanus development rates are linked to temperature
  - Calanus egg production is linked to food (chlorophyll)
  - Satellite data should be good indicator of Calanus dynamics



- Ran system for 1998-2004, Jan-June
- Data available at <a href="https://www.geo.cornell.edu/whales">www.geo.cornell.edu/whales</a>











**Start of Peak (Model)** 

### **Operational Models**



- Operational Oceanography
  - Real-time estimates of ocean state
  - Assimilate observations into model
  - These are a tremendous resource that biologists should exploit
- Can apply the same concepts to biology
  - Synthesize multiple observations
  - Extend observations in space and time
  - Will apply to CCB zooplankton distributions

# **RWPS 2.0**



### Summary

- Two themes
  - Need to understand how species fit into ecosystem
    - Actions for one species could affect another
    - Ex: Herring, right whales (tuna, humpbacks, cod...)
  - Models, models, models
    - Formalizations of how we think processes are connected
      - Ex: connect satellite data to Calanus and right whales
    - Operational circulation models provide accurate description of ocean's 3D state
      - Link habitat to actual processes not proxies
      - Apply the same ideas to biology

